Ders Adı | SINIR KOŞULLU PROBLEMLER | Kod | MATE4195 |
Kredi | 3 | AKTS | 5 |
Z/S | Seçmeli | Teorik Saat | 3 |
Uygulama Saat | 0 | Lab Saat | 0 |
Ders Dili | Türkçe | Dersi Veren | Dr. Ögr. Üyesi SERKAN İLTER |
Dersin Veriliş Türü | |||
Sınır koşullarını içeren hem Adi Diferansiyel Denklemler hem de Kısmi Diferansiyel Denklemler ile ilgili matematiksel problemlerin tanıtılması ve çözüm metotlarının öğretilmesi amaçlanmaktadır.
Sınır koşullarını içeren Adi Diferansiyel Denklemler, Green fonksiyonu yardımı ile çözümün belirlenmesi, Sturm-Liouville Problemleri, Sınır koşullarını içeren Kısmi Diferansiyel Denklemler, Riemann Metodu, Green Teoreminin uygulamaları ile çözümün bulunuşu, Dirichlet-Neumann ve Robin Sınır koşullu problemler.
Ders notları, ders kitapları, tartışma ve ödevler.
1. Ian N. Sneddon, Elements of Partial Differential Equations 2. K. Sankara Rao, Introduction to Partial Differential Equations 3. J. F. Stanley, Partial Differential Equations for Scientists and Engineers 4. E. C. Zachmanoglou, Dale W. Thoe, Introduction to Partial Differential Equations with Applications 5. A.L. Nelson, K.W. Folley, M. Coral Differential Equations 6.W. Leighton Ordinary Differential Equations